A Normalized Least Mean Square and Dynamic Time Warping (DTW) Algorithm for an Intelligent Quran Tutoring System
نویسندگان
چکیده
منابع مشابه
Adaptive Noise Cancellation using Modified Normalized Least Mean Square Algorithm
This paper presents an efficient design of Adaptive filters which uses enhanced NLMS algorithm for eliminating noise added by mean of various communication media or any other noise sources. By using the appropriate weights, Adaptive filter estimates and remove the estimated noise signal from the available information. LMS and Normalized LMS are two most efficient algorithm for noise cancelation...
متن کاملLeast Mean Square Algorithm
The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...
متن کاملLeast Mean Square Algorithm
The Least Mean Square (LMS) algorithm, introduced by Widrow and Hoff in 1959 [12] is an adaptive algorithm, which uses a gradient-based method of steepest decent [10]. LMS algorithm uses the estimates of the gradient vector from the available data. LMS incorporates an iterative procedure that makes successive corrections to the weight vector in the direction of the negative of the gradient vect...
متن کاملAn Adaptive Ant System using Momentum Least Mean Square Algorithm
In this paper, a novel model has been proposed for pheromone updation of the Ant-System, entitled as Momentum Adaptive Ant System (MAAS). MAAS exploits the properties of Adaptive Filters. The proposed algorithm is implemented using momentum-LMS (Least Mean Square) based algorithm. It imparts information about the previous occurrence of the system so as to keep the system active even in the regi...
متن کاملMean square convergence analysis for kernel least mean square algorithm
In this paper, we study the mean square convergence of the kernel least mean square (KLMS). The fundamental energy conservation relation has been established in feature space. Starting from the energy conservation relation, we carry out the mean square convergence analysis and obtain several important theoretical results, including an upper bound on step size that guarantees the mean square con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering & Technology
سال: 2018
ISSN: 2227-524X
DOI: 10.14419/ijet.v7i4.15.25761